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Abstract 

 

This report documents the results of a Laboratory Directed Research and 

Development (LDRD) effort entitled “Classifier-Guided Sampling for Complex 

Energy System Optimization” that was conducted during FY 2014 and FY 2015.  The 

goal of this project was to develop, implement, and test major improvements to the 

classifier-guided sampling (CGS) algorithm.  CGS is type of evolutionary algorithm 

for performing search and optimization over a set of discrete design variables in the 

face of one or more objective functions.  Existing evolutionary algorithms, such as 

genetic algorithms, may require a large number of objective function evaluations to 

identify optimal or near-optimal solutions.  Reducing the number of evaluations can 

result in significant time savings, especially if the objective function is 

computationally expensive.  CGS reduces the evaluation count by using a Bayesian 

network classifier to filter out non-promising candidate designs, prior to evaluation, 

based on their posterior probabilities.  In this project, both the single-objective and 

multi-objective versions of the CGS are developed and tested on a set of benchmark 

problems.  As a domain-specific case study, CGS is used to design a microgrid for 

use in islanded mode during an extended bulk power grid outage.  
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1 INTRODUCTION  

1.1 Problem Background 

The difficult task of designing a complex engineering system is significantly aided with the use 

of computer models and optimization software.  For example, in a modern energy distribution 

system, integration of traditional fossil and renewable sources, unpredictable loads, and the 

inclusion of energy storage elements are only a few of the design decisions that could be 

informed with the use of modeling and optimization applications.  High-fidelity computer 

models of such systems are invaluable resources for understanding and evaluating system 

behavior.  However, computational expense limits their usefulness for optimization and decision 

space exploration because metaheuristic optimization methods may require numerous 

evaluations of the expensive model to identify promising solutions.   

 

Reducing the time required to solve complex optimization problems is a valuable endeavor.  If a 

single optimization run requires multiple days to complete, a significant reduction in the solution 

time will enhance our ability to support stakeholders.  This is especially true in light of the fact 

that several analyses are often required; model or data errors may be discovered on initial trials, 

or additional runs may be requested upon stakeholder review of initial results.  Reducing the 

amount of time required to perform an optimization run will enable more runs to be performed, 

and may mean the difference between addressing a specific question or not, given a hard 

deadline such as a final out brief to leadership or an annual budgeting cycle. 

 

1.2 Goals and Objectives of the Project 

The goal of this project is to improve a relatively new optimization technique known as 

Classifier-Guided Sampling (CGS) and to develop a novel optimization method that is capable of 

solving large, computationally expensive, discrete variable, single- and multi-objective 

optimization problems.  CGS reduces objective function evaluations by using an inexpensive 

Bayesian network (BN) classifier to leverage knowledge gained from all prior evaluations and to 

predict the qualitative performance of candidate solutions.  Using a classifier in this way helps 

the search process focus on high-performance designs and to avoid wasteful evaluations of poor-

performing ones. 

 

Prior to the start of this project, CGS was a new technology with significant shortcomings that 

rendered it incapable of handling large-scale, multi-objective optimization problems.  First, in its 

initial form [1], CGS was only suitable for small design spaces because it required enumeration 

and processing of every solution in the discrete design space at each iteration.  This approach is 

impractical for moderate to large design spaces due to the combinatorial explosion that is 

associated with an increase in the number of design variables.  To address this issue, the 

probability distributions on which the BN classifier is based are sampled directly to guide the 

search towards the most promising designs in the solution space.  Initial steps to address this 

issue were taken in [2], and this LDRD continues this work by implementing a more scalable and 

flexible computer implementation of this approach.  Second, accounting for interactions between 

variables is critical to the performance of the CGS algorithm.  Prior to this work, these 

dependencies had to be programmed into the algorithm manually.  While doing so is feasible for 

small problems that are well-understood, identifying and assigning these dependencies when 
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dealing with large problems with hundreds of variables is a nearly impossible task.  This issue 

has been addressed by incorporating an algorithm that automatically builds the BN based on a set 

of training data.  Lastly, multi-objective capability has not previously been developed for the 

CGS method.  This capability is realized by utilizing the classifier outputs to sample only the 

candidate solutions that are believed to be Pareto optimal.  The goal of this research has been to 

address the three aforementioned shortcomings of CGS.  In its new form, CGS has the ability to 

solve large-scale, computationally expensive, multi-objective optimization problems. 

 

The improved version of CGS is tested on a set of single- and multi-objective test problems.  The 

rate at which the algorithm converges towards optimal designs is recorded, and the performance 

is compared to a standard genetic algorithm.  As a domain-specific case study, CGS is used to 

design a microgrid for use in islanded mode during an extended bulk power grid outage.  The 

microgrid design problem has a single- and multi-objective problem formulation.  In the single-

objective case, the average load not served (LNS) during the outage is minimized, subject to a 

constraint on installation cost.  In the multi-objective case, a set of Pareto optimal designs is 

sought that efficiently trade minimization of installation cost and LNS. 
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2 CLASSIFIER-GUIDED SAMPLING 

CGS is a randomized optimization technique suitable for discrete variable problems.  CGS 

achieves efficient global optimization by using a Bayesian classifier to provide categorical 

predictions of the performance of candidate solutions prior to expensive evaluation.  In the 

following section, an overview of related optimization technologies is provided and the 

differentiating characteristics of CGS are highlighted.  In Section 2.2, the mathematical details of 

a Bayesian network classifier are given.  Finally, in Sections 2.3 and 2.4, the CGS algorithm and 

its multi-objective extension, respectively, are explained. 

 

2.1 Related Work 

Over the past several decades, significant research effort has been dedicated to the study and 

development of evolutionary algorithms (EAs).  The term EA describes a broad category of 

population-based optimization techniques that are loosely inspired by natural evolutionary 

processes in which a population of individuals evolves according to a randomized natural 

selection process.  EAs make no assumptions about the objective functions they seek to optimize.  

Therefore, they are well-suited for black-box optimization problems where only the inputs and 

outputs of the objective functions are known, gradient information is unavailable, and linearity or 

convexity cannot be assumed.   

 

The most well-known type of EA is the genetic algorithm (GA).  GAs explore the design space 

by selecting and combining solutions from the current population [3].  Ideally, combinations of 

high-performing schemata, or partial solutions, are created and combined to form ever-

improving designs with each iteration.  These high-quality partial solutions are known as 

building blocks [4].  When building blocks are of a high order, or if they span a significant length 

of the encoded solution, the GA crossover and mutation operators are likely to inadvertently 

disrupt them, a common phenomenon known as the linkage problem [5].  One approach to 

addressing this issue is to develop a probabilistic model using the population of best known 

designs, and subsequently use this model to generate new designs.  The general approach of 

replacing traditional GA recombination operators with a probabilistic model is the defining 

characteristic of a class of EAs known as estimation of distribution algorithms (EDAs) [6].   

 

Several EDAs have been published since the mid-1990s.  For example, the population-based 

incremental learning algorithm (PBIL) [7] and compact genetic algorithm (cGA) [8] use a 

probability vector to generate new solutions.  However, both assume that there are no 

interactions between variables.  The mutual information maximizing input clustering (MIMIC) 

[9] algorithm uses a 2
nd

 order density estimation, and is therefore capable of capturing pairwise 

variable interactions.  Other EDAs model the factorization of distributions with a Bayesian 

network, the structure of which is learned and updated incrementally throughout the optimization 

process.   Perhaps the best known algorithm of this type is the Bayesian optimization algorithm 

(BOA) [10].  EDAs like BOA are able to capture variable interaction of arbitrary order without 

the need for expert knowledge of the underlying optimization problem; a practitioner using BOA 

need only specify an upper limit on the order of the interactions amongst design variables.   

 



 

10 

 

CGS builds on the work of previous EDAs by using a Bayesian classifier to perform two 

important tasks in the optimization.  First, similar to other EDAs, the probability distributions 

that comprise the classifier are sampled directly to generate new designs for exploration.  Like 

the BOA, the distributions are factored according to a Bayesian network, the structure of which 

is learned based on a population of promising designs.  Second, CGS uses a classifier to predict 

the performance of each candidate design, prior to objective function evaluation.  The second 

task described above is what makes CGS different from all other existing EDAs.  CGS is 

therefore able to take advantage of the properties of the most advanced EDAs, while also 

leveraging information gained from all previous evaluations in a machine learning fashion to 

filter out designs that have a low likelihood of being a high-performance design after evaluation 

of the objective function.   

 

2.2 Bayesian Classifiers 

Classification is a machine learning problem in which the goal is to predict the categorical class 

label of a specific instance of a set of attributes.  Prior to classification, a classifier must be 

trained using a set of known feature vector / class label pairs.  In the context of CGS, the feature 

vectors are specific design instances, and the class labels are assigned according to their known 

objective function values (e.g. ‘good’/’bad’).   

 

A Bayesian classifier uses a factorization of probability distributions to predict the categorical 

performance of a candidate configuration based on all previously evaluated points.  Let K be the 

number of classes, and let ck represent the class k for  1,2,...,k K .  The classification is 

performed in a D-dimensional design space, and x = [x1, x2,…, xD] is a vector of design variables.  

If x̂ is a specific design instance of x, Bayes’ formula is used to estimate the probability that x̂ is 

a member of the class ck, (i.e., the probability of ck given x̂) according to: 
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where P(x|ck) is the conditional probability of a design instance given the class label, and P(ck) is 

the prior probability of any randomly selected point belonging to class ck.  The LHS of Eq. (1) is 

called the posterior probability, and design x̂ is classified as a member of the class ck that has the 

highest posterior when compared to all other classes.   

 

CGS sets the prior probabilities, P(ck), according to a constant discrete uniform distribution: 

 

 
1

kP c
K

 ,   1,2,...,k K   (2) 

where K is the number of performance categories.   

 

P(x|c) is a D-dimensional joint distribution that is estimated from a training set of design vector / 

class label pairs.  It is generally impractical to model the full joint distribution.  Whenever 

possible, it is advantageous to make conditional independence assumptions about the design 

variables and refactor P(x|c) into a product of univariate distributions.  While no variable can be 
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independent of the class variable c, variables may or may not be independent of each other.   In 

its simplest form, CGS assumes that all design variables are independent, and P(x|c) reduces to: 

 

       1 2| | | ... |DP c P x c P x c P x cx  (3) 

Using the factorization in Eq. (3) is a special case of Bayesian classifier known as the naïve 

Bayes classifier [11].  A particular factorization of P(x|c) can be graphically represented using a 

BN, which is a directed acyclic graph.  For example, the BN representation of the factorization in 

Eq. (3) is shown in Figure 1. 

 

 
Figure 1: Bayesian network for the naïve Bayes classifier 

 

 
Figure 2: Bayesian network for a classifier with non-independent design variables 

 

Dependencies between variables can be represented by including directed edges between 

variable nodes in the BN.  For example, the BN depicted in Figure 2 is a graphical representation 

of the joint probability factorization in Eq. (4).  

 

       1 2 1 3 2| | | , | ,P c P x c P x c x P x c xx  (4) 

CGS is currently only for use with discrete variables, and therefore uses D discrete probability 

distributions to estimate P(x|c).  The task of estimating the distribution parameters is achieved by 

assigning class labels to all design points that have been evaluated with the expensive simulation, 

and then counting the number of instances of each possible combination of that variable and its 

parent variables in the BN (including the class variable).   

 

For example, assume design variables x1 and x2 both have domain {0, 1} and x2 has parent nodes 

x1 and c in the BN.  We need to estimate P(x2 | c = ‘good’, x1 = 1), where ‘good’ is a categorical 

class label to indicate that a design is promising.  This distribution is modeled with a probability 

mass function with two parameters: x2=0,c=good,x1=1 and x2=1,c=good, x1=1.  The distribution 

parameter x2=0,c=good,x1=1  is estimated according to: 
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where #(x2 = 0, c = ‘good’, x1 = 1) and #(x = 1, c = ‘good’, x1 = 1) are the number of instances of 

(x2 = 0, c = ‘good’, x1 = 1) and (x2 = 1, c = ‘good’, x1 = 1) in the training set, respectively.  The 

parameters  and  represent initial counts and can be used to initialize the class conditional 

probability distributions when prior knowledge of the distribution probabilities is available.  The 

distribution parameter x2=1,c=good,x1=1  is estimated similarly.   

 

The process is generalized to variables with larger domain sizes as follows.  If the discrete design 

variable xi has cardinality (domain size) C, then j

ix is the j
th

 level in the domain of xi, 

where  1,2,...,j C .  Furthermore, if the initial counts are represented by the vector  = [ 1, 

2,…, C], then the discrete distribution parameters for j

ix  given a specific instantiation of its 

parent variables p̂ is given by Eq. (6):  
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(6) 

The simplest setting for the initial counts is to set them all to unity [12].  Doing so sets all of the 

class conditional probability distributions to uniform before any training points are added to the 

classifier.  This approach generally makes sense unless there is reason to believe, possibly 

through prior experimentation, that some variable values have higher likelihood than others 

given the class label. 

 

2.3 Using a Bayesian Classifier to Perform Black-Box Optimization 

In this section, the single-objective version of CGS is described.  The extension to multi-

objective optimization is detailed in Section 2.4.  CGS uses a Bayesian classifier to achieve 

efficient design space exploration and optimization in two ways.  First, new candidate points are 

generated by sampling the class conditional probability distributions that comprise the classifier.  

By sampling the distributions that are trained with high-performance solutions, new points are 

generated that are likely to be similar to those that are already known to be good and that may 

improve the objective function.  Second, the updated classifier is then used to screen each new 

candidate solution based on the posterior probability of the design’s class prior to expensive 

evaluation.  With each new point that is evaluated, assigned a class label, and added to the 

classifier training set, the classifier improves its ability to generate high-performance solutions 

and filter out low-performance ones. 

 

2.3.1 Main Loop of the Algorithm 

Figure 3 depicts the CGS main loop.  Initially, (Step 0) the class-conditional probability 

distributions are instantiated as uniform discrete distributions.  In Step 1, the class conditional 

probabilities of the high-performance class are sampled to generate a candidate solution.  In Step 

2, the candidate’s posterior probability of being ‘good’ is computed by the classifier.  In Step 3, 

the candidate solution is accepted or rejected for evaluation based on two criteria.  First, the 

solution is checked against all previously evaluated solutions to avoid repeat evaluations of the 

same solution.  Second, if the candidate solution's posterior probability of being ‘good’ is below 

a threshold, it is rejected.  The threshold value is determined for each candidate solution by 
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sampling from a uniform distribution ranging from zero to one.  If the candidate solution is 

accepted, the new design point is added to the set of new designs to be evaluated with the 

expensive simulation in Step 4.  Otherwise, the method returns to Step 1 to generate a new point.  

Steps 1-3 are repeated until Nbatch new designs are generated and accepted for evaluation, where 

Nbatch is a user-defined parameter that can be any positive integer and represents the number of 

new designs to evaluate at each iteration. 

 
  

1. Sample the Probability 
Distribution of “Good” Solutions

4. Expensive Evaluation

5. Update the Classifier

6. Converged?
No

3. Accept?

2. Determine Probability of 
Being “Good”

No

0. Begin

7. End

Yes

Yes

 
Figure 3: Classifier-guided sampling algorithm 

 

In Step 5, the classifier is updated according to two separate processes.  First, the newly 

evaluated designs must be assigned class labels and added to the classifier training dataset.  Note 

that some of the previous training points may require class label reassignment (i.e., a ‘good’ 

point is now ‘bad’ due to an overall improvement in the set of the best designs).  Second, the 

structure of the classifier’s Bayesian network may be reconstructed from the current set of 

classifier training points using a learning algorithm.  These two processes are described in detail 

in subsequent sections.   

 

The main loop repeats if a convergence or stopping criterion does not end the cycle (Step 6).  

Stopping criteria can include reaching a user-defined upper limit on the evaluation count, 

iteration count, or wall-clock time.  Any common convergence criteria may also be used, such as 
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achieving a desired objective function value, or failing to improve the best design by some 

percentage after a constant quantity of most recent evaluations. 

 

2.3.2 Assigning Class Labels 

Class labels are assigned to newly evaluated designs according to how desirable they are relative 

to all those that have been evaluated thus far.  At a minimum, two classes are required, but more 

may be used if desired.  In the work presented here, each evaluated design is given a class label 

of either ‘good’ or ‘bad’.  Without loss of generality, we assume in this discussion that we seek 

to minimize the objective function.   

 

Class labels are determined by assigning the top Nbest evaluated solutions a label of ‘good’ and 

all others a label of ‘bad’, where Nbest is a user-defined constant.  In other words, the newly 

evaluated designs are added to the previous set of Nbest best designs, the set is sorted by 

ascending objective function value, and the top Nbest designs are assigned the ‘good’ label and all 

other are assigned the ‘bad’ label.  All new designs are then added to the training set with their 

assigned class labels.  Designs that were in the previous iteration’s set of Nbest best designs will 

either remain as they were (if they are still member of the ‘good’ class) or their class label will 

be reassigned from ‘good’ to ‘bad’ (they are no longer in the set of Nbest best designs).   

 

For constrained optimization problems, a method is needed to rank and sort a set of designs that 

has a mix of feasible and infeasible solutions.  One approach to constraint handling is to use a 

penalty function that increases the effective value of the objective function.  However, this 

approach distorts the objective function and requires additional user-defined parameters.  

Therefore, in this work, we implement the method proposed in [13].  Using this technique, 

feasible solutions are always preferred to infeasible ones.  When comparing two infeasible 

solutions, the one that violates the constraints by a lesser overall amount is preferred.  That is, for 

each constraint, the amount of the violation is scaled by dividing it by the average violation for 

that constraint of all designs evaluated thus far and then multiplied by 100.  The overall violation 

is then computed by summing all scaled violations.  This procedure prevents CGS from unfairly 

focusing on constraints that tend to have higher raw violation values.  As before, when 

comparing two feasible solutions, the one with the lower objective function value is preferred. 

 

2.3.3 Learning the Bayesian Network Structure 

The ability for CGS to explicitly capture interactions between variables offers a significant 

advantage over GAs.  In practice, expert knowledge of both BN theory and of the problem being 

solved is required for manual construction of the BN.  Therefore, one of the major goals of this 

LDRD was to implement a BN learning algorithm that updates the structure of the BN with each 

passing iteration of the CGS main loop.   

 

In general, learning the structure of a BN given a data set is NP-hard [14].  Therefore, it is not 

possible to construct the BN with an algorithm that is both fast and correct.  In this context, a fast 

learning algorithm is critical, because CGS requires the BN to be learned repeatedly during a 

single optimization run.  The K2 algorithm [15], a greedy probabilistic network building 

heuristic, is selected due to its speed and its strong theoretical basis.  K2 seeks to maximize an 

overall network score, which is given by Eq. (7): 
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where D is the number of design variables, BS is the candidate BN structure, and g(i,i) is the 

node score (given in Eq. (8)). 
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A thorough discussion of the theory behind Eq. (8) is provided by [15].  Table 1 provides 

descriptions of the terms in the node score calculation 

 
Table 1. Description of symbols in the K2 node score equation 

i The parent variables of the variable xi, where (1 ≤ i ≤ D) 

qi The number of possible configurations of i 

ri The cardinality (domain size) of variable xi 

Nij The number of instances in the dataset where the variables in i take their j
th

 

configuration, where (1 ≤ j ≤ qi) 

Nijk The number of instances in the dataset where the variable xi takes its k
th

 value and the 

variables in i take their j
th

 configuration, where (1 ≤ k ≤ ri) 

 

The K2 algorithm requires two parameters as user inputs: an upper limit on the number of 

parents each node may have, and a sequence order in which to process the nodes.  K2 visits each 

node in the network according to the provided search order to drive the network structure 

towards an approximately maximal scoring configuration.  When a node is visited, it is assumed 

that it initially has no parents; parents are added if doing so can increase the node score.  

Candidate parents for that node are restricted to its predecessors in the search order.  The 

predecessor node that increases the node score by the greatest amount is added as a parent until 

the upper limit on parents is reached or until no additional candidate parents exist that would 

increase the node score.  Note that the most complex networks are not necessarily preferred, as 

edges are only added if doing so increases the overall score of the network. 

 

In the CGS main loop, automatic learning of the classifier BN can be optionally performed in 

Step 5 (Figure 3).  Whether or not network learning occurs depends on the user-defined 

parameter PL, which is the upper limit on the number of parents a node may have in the BN (not 

including the class variable node, which is always a parent to all variables).  If PL is set to zero, 

no learning will occur.  If it is set to any positive value between 1 and D-1, network learning is 

performed.  When automatic learning is enabled, CGS uses the set of Nbest designs as the dataset 

to learn the BN.  Only the set of Nbest are used because, of all previously evaluated designs, the 

best ones are most likely to respect any variable interactions that may exist.  The K2 search order 

changes on each iteration, and is given as a random permutation of the design variables.   

 

After K2 learns a new network on the current iteration, the network score for the previous 

iteration’s network is computed using the latest dataset.  The network structure is updated only if 
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the new structure has a higher network score than the previous network.  Finally, if the network’s 

structure changes, the classifier is retrained with all current design vector / class label pairs. 

 

2.4 Multi-Objective Classifier-Guided Sampling 

CGS has thus far been described in the context of single-objective optimization.  That is, the goal 

of the optimization has been to minimize (or maximize) a single performance metric subject to 

zero or more constraints.  In practice, however, it is often necessary to optimize more than one 

competing objective simultaneously for the purpose of identifying and understanding the impact 

of decisions on performance tradeoffs.  The goal of multi-objective optimization is to identify the 

set of non-dominated designs, i.e., those for which there are no known designs outside of this set 

that are better in at least one objective and not worse in any others. 

 

Multi-objective CGS (MOCGS) proceeds almost identically to the single-objective version with 

the main difference being the manner in which class labels are assigned after each new batch of 

solution evaluations.  Recall from Section 2.3.2 that class labels are assigned by sorting a set of 

designs with known objective function values and assigning the class label of ‘good’ to the top 

Nbest designs.  The size of this set is equal to the sum of Nbest and Nbatch and is sorted according to 

the value of the single objective function (and feasibility if constraints are present).  When 

multiple-objectives are present, an alternate sorting scheme is needed.  To perform this task, 

MOCGS uses the same sorting procedure that is implemented by NSGA-II (non-dominated 

sorting genetic algorithm) [16], which is a multi-objective genetic algorithm that is popular for 

its speed and simplicity.   

 

NSGA-II sorts solutions first by increasing domination rank and next by decreasing crowding 

distance.  To determine the domination rank (Figure 4), the set of solutions that are non-

dominated are assigned a ranking of 1.  The solutions that would be non-dominated after 

removing all of the solutions of rank 1 are assigned a ranking of 2.  This process continues until 

there are no more rankings to assign.  The crowding distance is a measure of the density of other 

solutions of a given rank that surround a particular solution.  Solutions that are crowded by fewer 

other solutions are preferred in order to promote diversity in the population.  The crowding 

distance of a particular solution is determined by adding the distances of the two designs on 

either side of it along each of the objectives.  The extreme solutions of a particular domination 

rank are always given a crowding distance of infinity to maintain the broadest spread of the non-

dominated front.  For a detailed explanation and pseudocode of the NSGA-II algorithm for 

determining domination ranks and crowding distances, refer to [16].   

 

MOCGS handles constraints using the same approach as the single-objective version.  Feasible 

solutions are always preferred to infeasible ones.  When comparing two infeasible solutions, the 

one that violates the constraint by a lesser overall amount is preferred (regardless of domination 

rank and crowding distance). 
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Figure 4: Domination raking for a two-objective minimization problem [17] 

 

Figure 5 illustrates how CGS uses the NSGA-II sorting procedure to assign class labels after 

each new batch of new designs is evaluated.  First, the new Nbatch new designs are combined with 

the current set of Nbest ‘good’ designs to form one unsorted set.  Next, the set is sorted by 

increasing domination ranking.  If a domination rank exists whose designs can only be partially 

accommodated into the top Nbest designs (rank 2 in Figure 5), members of that rank are sorted by 

decreasing crowding distance.  Finally, the top Nbest designs in the set are assigned to the ‘good’ 

class, and all others are assigned to the ‘bad’ class, and the classifier is updated appropriately.   

 

Sort by 
domination 

rank

Current iteration’s 

Nbest ‘good’ designs

Sort non-
accommodated 

rank by crowding 
distance

Domination rank = 1

Domination rank = 2

Domination rank = 3

Assign top Nbest

to ‘good’ class

Assign rest to 
‘bad’ class

Current iteration’s 

Nbatch new designs

Next iteration’s 

Nbest ‘good’ designs

 
Figure 5: NSGA-II non-dominated crowding sorting procedure applied to MOCGS 

 

The final output of a MOCGS run should be the set of all non-dominated solutions that the 

optimization was able to discover.  However, it is likely that the quantity of these solutions will 

exceed the constant Nbest, and returning the set of Nbest ‘good’ designs would not provide the 

complete desired output.  Therefore, MOCGS maintains an external set of solutions that contains 

the set of all non-dominated designs that have been identified.  It is updated after each iteration, 

and it does not participate in or influence the optimization in any way.  When MOCGS 

terminates it will contain all non-dominated designs that the optimizer was able to identify.  If no 
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feasible solutions were discovered, it will contain all non-dominated infeasible designs without 

regard to the extent of constraint violation. 
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3 COMPARISON TO GENETIC ALGORITHMS 

In this section, the performances of single- and multi-objective CGS are compared to single- and 

multi-objective GAs.  The GA implementation used in these tests is the JEGA solver available in 

the DAKOTA toolkit [18].  For the single-objective comparison, six constrained and 

unconstrained single-objective problems are used.  For the multi-objective experiments, one of 

the constrained single-objective problems (50-item knapsack problem) is reformulated as a 

multi-objective problem where the weight capacity constraint is treated as an objective rather 

than a constraint.  The test problems are described next. 

 

3.1 Test Problems 

3.1.1 30-Variable Deceptive Function of Order 3 

The deceptive function of order 3 [5] is a maximization problem with strong dependencies 

among the decision variables, and is formulated as 

 

 3

0.9 if 0

0.8 if 1

0 if 2

1 otherwise

deceptive

u

u
f X

u





 




 (9) 

where X is a vector of three binary variables, and u is the sum of the input variables.  Eq. (9) can 

be summed over an arbitrary number of variables to scale the problem to larger sizes.  In the 

experiments that follow, a 30-variable objective function is generated by summing Eq. (9) a total 

of ten times, as shown in Eq. (10): 
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   (10) 

where X = (X0,…, Xn-1) is a vector of variables, Si = (X3i, X3i + 1, X3i + 2), and n = 30.  Due to the 

strong coupling of the input variables, this function is ideal for demonstrating the effectiveness 

of using a BN-based optimization technique such as CGS when compared to GAs. 

 

3.1.2 50-Item 0-1 Knapsack Problem 

The objective of the 0-1 knapsack problem is to select a subset of available items that each have 

a constant weight and value such that the total value, V, of the selected items is maximized 

without exceeding a predetermined upper limit on the combined weight, W.  For the experiments 

performed here, there are 50 different items to choose from, and only one or zero of each item 

may be included.  Denoting a vector of binary variables x = (x1, x1, … , x50) to represent a 

solution to the problem, the problem is formulated as follows [1]: 
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where vi and wi are the value and weight of item i, respectively.  W is chosen to be 50% of the 

total weight of all available items.  The weights and values used for this problem are provided in 

Appendix A. 

 

For the multi-objective experiments, this problem is reformulated to a 2-objective problem by 

treating the total weight as an objective that is sought to be minimized. 

 

3.1.3 System Design Problem 

The goal of this problem is to identify the best selection of subsystems that combine in a modular 

fashion to form a complete system.  Each subsystem has two or more technology options to 

choose from, and each technology option has an associated cost and utility associated with it.  

Only one technology option from each subsystem may be chosen.  In addition, technology 

options from one subsystem may necessitate or obviate technology options from another 

subsystem.  In the single-objective version of this problem, the goal is to maximize the total 

utility U of all subsystems without exceeding a fixed upper limit on total system cost C while 

respecting all necessitation and obviation constraints. 

 

For the experiments performed here, the overall system is to be comprised of 15 subsystems, 

each with varying numbers of available technology options to choose from.  In addition, there 

are 25 necessitation constraints and 15 obviations constraints that cannot be violated.  The 

utilities and costs of each technology option as well as the necessitation and obviation constraints 

are detailed in Appendix A. 

 

3.1.4 30-City Traveling Salesman Problem 

The traveling salesmen problem (TSP) is a frequently studies combinatorial optimization 

problem.  Given a set of cities and their Cartesian coordinates, the goal is to find the shortest 

possible tour that visits each city exactly once and returns to the city of origin.  The distance 

between two cities is assumed to be the same regardless of direction traveled.   

 

A candidate solution to this problem is encoded as a binary string of length n∙m, where n is the 

number of cities in the tour and m = log2n (rounded up) [7].  Each city is represented by a 

contiguous substring of length m witch are decoded into integers that represent positions in the 

tour.  Ties are resolved by assuming that the city whose substring appears first in the bit string is 

the city that is visited first.  This encoding/decoding strategy ensures that all possible binary 

strings of length n∙log2n bits can be decoded into valid TSP solutions (i.e., each city is visited 

exactly once).  For the experiments performed here, the 30 city locations are obtained from [19] 

and are tabulated in Appendix A. 
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3.1.5 Warehouse Location Problem 

In the warehouse location problem (WLP), a set of stores exist which each must be supplied by 

exactly one warehouse.  Warehouses, each of which may supply one or more stores, may be 

opened in a variety of locations.  There is a fixed cost associated with opening a warehouse, and 

the cost to supply a store depends on which warehouse is supplying it.  Furthermore, each 

warehouse has a maximum capacity that specifies how many stores it can supply.  The goal of 

the WLP is to decide which warehouses to open and which stores they should supply such that 

the total warehouse opening and store supply costs are minimized. 

 

In the experiments performed here, a candidate solution is represented by a vector x = [x1, x2, … , 

xn], where n is the number of stores. Each xi represents a store and its value can be any integer 

between 1 and m, where m is the number of warehouses.  The problem specific parameters are 

taken from the example in the CPLEX OPL user manual [20].  There are ten stores and five 

warehouses.  The fixed cost of opening each warehouse is 30.  The warehouse capacities and 

store supply costs are tabulated in Appendix A. 

 

3.1.6 Welded Beam Design Problem 

The welded beam problem [21, 22] is a popular engineering design optimization problem in 

which the goal is to minimize the cost of welding a metal cantilever beam.  A rectangular bar is 

to be welded at one end to a wall and it will support a point load at the opposite end (Figure 6).  

The objective is to select the weld style, beam/weld material, and geometric properties that 

minimize the total material cost without violating any of four constraints. 

 

 
Figure 6: Welded beam problem [22] 

 

The weld style describes whether two (x1 = 0) or four (x1 = 1) of the contact edges between the 

beam and wall are to be welded.  The weld filler metal and beam material will be of the same 

type, and the options are steel, cast iron, brass, and aluminum (x2 = 1, 2, 3, or 4, respectively).  

The geometric parameters are the thickness of the weld (x3 = h), the width of the beam (x4 = t), 

the thickness of the beam (x5 = b), and the length of the welded portion of the beam (x6 = l).  The 

geometric parameters are restricted to discrete values, as shown in Table 2. 
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Table 2. Welded beam design problem geometric parameters 
Variable Minimum (inches) Maximum (inches) Step size (inches) 

x3 0.0625 0.5000 0.0625 

x4 7.500 10.000 0.125 

x5 0.0625 1.0000 0.0625 

x6 0.125 3.000 0.125 

 

Representing the six design variables by a vector x, the objective function and constraints are 

computed by Eq. (12): 
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Where c1 and c2 are material costs, and g1, g2, g3, and g4 are constraints on the bending stress 

(x), buckling load Pc(x), beam deflection (x), and weld shear stress (x), respectively.  The 

design stress, S, is dependent on the material choice.  The force, F, of the point load at the end of 

the beam is 6000 lb, the extended length (portion of beam not welded to the wall) L is 14 inches, 

and the maximum allowable deflection, max, is 0.25in.  The material costs, properties, and 

formulas for calculating Pc(x), (x), and (x) are available in [23]. 

 

3.2 Single-Objective Performance Comparison Results 

The single-objective optimization performance between CGS and GAs is assessed using rate of 

convergence tests in which, during an optimization run, the current single best solution is 

recorded after each evaluation of the objective function.  Plotting the best known objective 

function vs. the number of function evaluations then provides a visual and analytical indicator of 

how quickly each method converges towards optimal solutions.  Both CGS and GA perform 

differently across multiple runs due to their reliance on random number generation.  Therefore, 

each optimization problem is solved 50 times using both optimization techniques, and the 

average results are plotted.  In addition, vertical bars are added at select points to indicate the 

standard deviation of the best known objective function found across the 50 tests.  Repeat 

evaluations of previously-evaluated designs are precluded for both methods. 

 

In all tests, the GA used a two-point crossover operator.  The mutation operator used randomly 

selects a design variable, converts it to a binary representation, randomly selects a bit from that 

string, and toggles it.  The selector used always favors feasible solutions to infeasible ones, and 

less infeasible solutions to more infeasible ones.  Documentation of these operators is provided 

in the DAKOTA reference manual [18]. 

 

There are several user-defined parameters that must be specified for both optimization 

techniques.  For CGS, they include Nbest, Nbatch, and PL (or a constant user-specified BN if 

automatic network learning is not enabled).  For GA, the user-defined parameters include the 
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population size, crossover rate, and mutation rate.  To get the best possible performance of both 

CGS and GA, their respective parameters were tuned in a set of preliminary optimization runs.   

 

In Sections 3.2.1-3.2.6, the user-defined parameters that are used by both CGS and GA are 

tabulated and the rate of convergence curves are plotted.  The results of all test problems are 

discussed together in Section 3.2.7. 

 

3.2.1 30-Variable Deceptive Function of Order 3 

For this problem, automatic network learning was not enabled for CGS.  Instead, the rate of 

convergence experiments were run with two fixed, manually set BNs.  In one case, a naïve Bayes 

classifier (i.e., all variables are independent of each other) is used.  In the second case, a priori 

knowledge of the underlying problem structure is used to construct the BN.  Recall from Eq. (9) 

and (10) that the overall objective function is a sum of sub-functions whose values depend on 

non-overlapping sets of three consecutive variables.  The variables in each set of are not 

independent of each other.  Therefore, the BN used model x1 as a parent of x2 and x3, and x2 as a 

parent of x3, with this pattern continuing for every set of three consecutive variables (Figure 7).  

As always, the class variable c is a parent of all design variables. 

 

c

x1 x2 x3 x4 x5 x6

 
Figure 7: Manual BN used for the CGS solution of the order 3 deceptive 

 

The other user-defined CGS and GA parameters that were used for the 30-variable deceptive 

function are shown in Table 3, and the results of the rate of convergence tests are shown in 

Figure 8. 

 
Table 3. User-defined parameters for the deceptive function of order 3 

CGS Parameters  GA Parameters 

Nbest 20  Population Size 50 

Nbatch 20  Crossover Rate 0.8 

PL n/a (fixed BN)  Mutation Rate 0.01 

 

3.2.2 50-Item 0-1 Knapsack Problem 

For this problem, automatic network learning was disabled for CGS, and a fixed naïve Bayes 

classifier was used.  The other parameters used for both optimization methods are shown in 

Table 4, and the results of the rate of convergence tests are shown in Figure 9. 
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Table 4. User-defined parameters for the 50-item 0-1 knapsack problem 

CGS Parameters  GA Parameters 

Nbest 20  Population Size 50 

Nbatch 20  Crossover Rate 0.8 

PL n/a (naïve Bayes)  Mutation Rate 0.01 

 

3.2.3 System Design Problem 

The user-defined optimization parameters for the system design problem are shown in Table 5, 

and the results of the rate of convergence experiments are shown in Figure 10.   

 
Table 5. User-defined parameters for the system design problem 

CGS Parameters  GA Parameters 

Nbest 50  Population Size 100 

Nbatch 50  Crossover Rate 0.8 

PL 2  Mutation Rate 0.01 

 

3.2.4 30-City Traveling Salesman Problem 

The user-defined optimization parameters for the 30-city TSP are shown in Table 6, and the 

results of the rate of convergence experiments are shown in Figure 11.  

 
Table 6. User-defined parameters for the 30-city TSP 

CGS Parameters  GA Parameters 

Nbest 50  Population Size 100 

Nbatch 50  Crossover Rate 0.8 

PL 2  Mutation Rate 0.01 

 

3.2.5 Warehouse Location Problem 

The user-defined optimization parameters for the warehouse location problem are shown in 

Table 7, and the results of the rate of convergence experiments are shown in Figure 12. 

 
Table 7. User-defined parameters for the warehouse location problem 

CGS Parameters  GA Parameters 

Nbest 20  Population Size 50 

Nbatch 20  Crossover Rate 0.8 

PL 1  Mutation Rate 0.01 

 

3.2.6 Welded Beam Design Problem 

The user-defined optimization parameters for the welded beam problem are shown in Table 8, 

and the results of the rate of convergence experiments are shown in Figure 13. 
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Table 8. User-defined parameters for the welded beam design problem 

CGS Parameters  GA Parameters 

Nbest 50  Population Size 100 

Nbatch 50  Crossover Rate 0.8 

PL 2  Mutation Rate 0.01 

 

 
Figure 8: Deceptive function results 

 

 
Figure 9: 50-Item knapsack results 
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Figure 10: System design problem results 

 

 
Figure 11: 30-city traveling salesman problem results 
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Figure 12: Warehouse location problem results 

 

 
Figure 13: Welded beam problem results 

 

3.2.7 Single-Objective Optimization Results Discussion 

The results of the rate of convergence tests for the 30-variable deceptive function are shown in 

Figure 8.  Initially, both instances of CGS outperform GA, but GA is able to find better solutions 

than the naïve Bayes implementation of CGS after roughly 700 function evaluations.  However, 

when the manual BN of Figure 7 is used to capture the variable dependencies for CGS, the 

performance is significantly better than that of GA.  On average, CGS with a well-constructed 

BN converges to the known global optimal solution (f = 10) quickly and consistently (all 
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converged in less than 1300 evaluations).  While it is difficult to tie this particular test problem to 

a real-world example, it effectively demonstrates the potential of CGS to solve difficult 

optimization problems provided that it is given a BN that accurately captures the dependencies 

amongst the design variables (or that it is able to discover those dependencies on its own).  

 

The results of the rate of convergence tests for the 50-item knapsack problem are shown in 

Figure 9.  For this problem, even though a fixed naïve Bayes classifier was used, CGS 

outperformed GA consistently at all stages of the optimization runs on average.  These results 

demonstrate that it is not always necessary to force CGS to capture variable interactions to 

ensure good performance.  That is, if the dependencies among variables are weak or non-

existent, CGS may perform well on average relative to GA. 

 

For the other test problems, which used the K2 algorithm for automatically learning the BN 

structure at each iteration, a common trend exists.  In general, CGS converges towards the global 

optimum more quickly early in the solution process and remains ahead of GA up until 

termination. Near the upper limits on function evaluations, when both methods have effectively 

leveled off, CGS finds a better objective function value and has tighter standard deviation bars 

than GA, indicating better and more consistent performance even when both methods are given a 

large budget of function evaluations.  The one exception to this trend occurs with the 30-city 

TSP (Figure 11).  For this problem, GA initially improves towards the optimal design 

significantly faster than CGS.  However, after approximately 13,000 function evaluations, CGS 

overcomes GA and identifies superior solutions, on average, given a larger allowance of function 

evaluations.  It should be noted that neither of the two optimization techniques is particularly 

effective at solving this problem as it is formulated here.  The vertical standard deviation bars for 

both methods are quite large, even near 25,000 evaluations, indicating inconsistent performance 

and low confidence that the global optimum is ever identified. 

 

3.3 Multi-Objective Performance Comparison Results 

Recall from Section 2.4 that the goal of multi-objective optimization is identify a set of non-

dominated solutions, i.e. those for which there are no known designs outside of this set that are 

better in at least one objective and not worse in any others.  With single-objective optimization, 

the best known objective function value provided a convenient way to plot a scalar, runtime 

performance metric vs. the number of function evaluations.  Accessing or computing such a 

metric is less straightforward with multi-objective analysis.  Some approaches include measuring 

the spread of the Pareto set (i.e., distance between extreme points), computing the hyper-volume 

under the Pareto set relative to an arbitrary reference point, or (when comparing two Pareto sets) 

computing the percentage of each Pareto set that is not dominated by the other.  However, no 

single metric can capture all Pareto performance attributes that may be of interest [24].  

Therefore, in this work, we simply plot the progress of the MOCGS and GA algorithms at 

specified intervals.  Furthermore, due to the difficulty of specifying an “average” Pareto set 

across multiple runs, results of only a single optimization run for both MOCGS and GA are 

presented. 
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3.3.1 2D 50-Item Knapsack Problem 

The 2D multi-objective version of the 50-item knapsack problem is similar to the single-

objective version.  The only difference is that the constraint on the maximum weight of all 

selected items is now an objective that is sought to be minimized.  As before, the total value of 

all selected items is to be maximized. 

 

The algorithmic details of MOCGS are provided in Section 2.4.  For the GA, the fitness of an 

individual solution is based on the number of designs in the population that dominate that design 

in the multi-objective space, with a lower domination count being better.  The same mutation and 

crossover operators from the single-objective experiments were used (random bit mutation and 

two-point binary crossover, respectively).  A selector is used that selects designs that have fitness 

that is below a certain limit.  In this case, the chosen limit is a domination count of 3.  Note that 

this allows the population size to grow beyond the user-specified initial population size.  

Documentation of these operators is provided in the DAKOTA reference manual [18]. 

 

The user-defined MOCGS and GA parameters for the 2D 50-item knapsack problem are shown 

in Table 9.  Both methods are set to terminate after performing 5,000 function evaluations. 

 
Table 9. User-defined parameters for the multi-objective 50-item knapsack problem 

CGS Parameters  GA Parameters 

Nbest 20  Population Size 50 

Nbatch 20  Crossover Rate 0.8 

PL 2  Mutation Rate 0.1 

 

Results of the MOCGS and GA optimization runs are presented in Figure 14.  Each plot (a-f) in 

the figure represents a snapshot of the current state of the optimization after specified number of 

function evaluations.  While MOCGS evaluates exactly Nbatch new designs with each iteration, 

the number of evaluations per iteration varies in this particular GA implementation.  Therefore, 

the numbers of function evaluations for each method don’t necessarily match in each snapshot.  

In all plots, the number of GA evaluations is greater than or equal to the number of MOCGS 

evaluations at the completion of that iteration. 

 

3.3.2 Multi-Objective Results Discussion 

The objective of the 2D 50-item knapsack problem is to simultaneously minimize the total 

weight and maximize the total value of the selected items.  Therefore, the goodness of the Pareto 

sets in Figure 14 can be assessed by identifying the ones that progress upwards and to the left of 

the plot area the fastest.  When neither set appears to dominate the other, the set with a larger 

spread (distance between end points) and a larger quantity of non-dominated designs is best.  

 

By viewing the plots in order of increasing function evaluations, it’s clear for this particular 

optimization problem that MOCGS outperforms the GA.  At the initial snapshot at 

approximately 420 function evaluations (Figure 14a), the entire MOCGS set dominates that of 

the GA.  The MOCGS set remains dominant in every snapshot up to the final plot in Figure 14f.  

In other words, not only is the final solution after (roughly) 5,000 evaluations better, but it would 

be better even the optimizers were terminated early (which may be necessary in practice, for 
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example, if the objective function were computationally expensive to evaluate).  In addition, the 

spread of solutions is slightly better for MOCGS in the final plot.  Lastly, MOCGS identifies 127 

non-dominated solutions, while GA identifies only 104 non-dominated solutions.   

 

The results of this experiment provide strong evidence that MOCGS has the ability to outperform 

GA on some multi-objective problems.  However, this isn’t sufficient evidence to conclude that 

MOCGS is always or more often preferred.  The results presented here are from one run with one 

particular setting of GA parameters and operators.  It is also difficult, based on this one study, to 

make general conclusions about the kinds of problems for which one technique would be better.  

Additional case studies and experiments would help to provide this type of guidance. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 14: Multi-objective 50-Item knapsack problem Pareto progression 
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4 APPLICATION TO MICROGRID DESIGN 

In October of 2012, Hurricane Sandy brought intense wind, rain, storm surges and claimed 

hundreds of lives.  In the U.S., it is estimated that Sandy damaged or destroyed 650,000 houses, 

left 8.5 million customers without power, and caused 72 deaths [25].  It also left millions of 

homes and businesses without electric power.  The storm was particularly devastating to the city 

of Hoboken, NJ, which was flooded for several days following the storm.  The electric power 

grid was unavailable during this time.  A well-designed microgrid (MG) may have been able to 

provide autonomous support to critical infrastructure during this outage.  However, the decisions 

about what distributed energy resources (DERs) to install, where to install them, and how they 

should be interconnected have significant implications on cost and the ability to serve critical 

loads during autonomous MG operation.  In this section, this problem is formulated as a single- 

and multi-objective optimization problem, and CGS is used to seek optimal MG configurations.  

The single-objective optimization results were published in the proceedings of the 2015 ASME 

Design Engineering Technical Conference [26] (SAND2015-0353C).  This work is also an 

extension of a previous study in which a thorough energy surety analysis was performed for the 

City of Hoboken by Sandia National Laboratories [27].  

 

4.1 Performance and Reliability Model Overview 

For this work, the Performance and Reliability Model (PRM) was used to simulate grid outages 

and assess the performance of candidate MG designs.  The PRM is a simulation code written in 

C++ at Sandia National Laboratories that is used to statistically quantify the performance and 

reliability of an MG operating in autonomous (islanded) mode.  The PRM allows the 

performance of an MG to be quantified in terms of fuel usage, renewables penetration, 

renewables spillage, and other operational characteristics.   

 

The PRM simulation relies on a representation of an unreliable power utility, specifically 

through the definition of failure and repair modes.  In a typical PRM simulation, thousands of 

utility outages are simulated to ensure that the calculated statistics are representative of average 

behavior.  The PRM models system behavior as a discrete sequence of events in time.  At each 

event, logic is executed which may result in the scheduling of more events.  The simulation 

proceeds until all events have been executed or until some stopping criterion is satisfied.   

 

The primary input to the PRM is an MG topology specification.  A topology specification 

includes descriptions of components such as electrical lines, busses, switches, transformers, 

generation assets and fuel sources, batteries, and inverters, in addition to the details of how these 

components are interconnected.  Most components in the PRM can be modeled as potentially 

unreliable.  To specify an unreliable component, failure modes must be defined where each mode 

represents a specific type or mode of component failure.  Each failure mode specifies a failure 

time and a repair time statistical distribution that is sampled to generate the time characteristics 

of the failures and repairs, respectively.  In addition to the physical layout and reliability 

characteristics of an MG, the PRM requires three configured controllers to define how the grid 

operates during different phases.  A controller implements and executes the logic applied during 

the three phases of operation: grid-tied operation, MG startup operation, and autonomous MG 

operation.  For additional details about the controllers and how they function in the context of 

PRM, refer to [26]. 
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The primary outputs of the PRM are computed quantities and statistics, any of which can be used 

as optimization objective functions.  All unreliable entities gather statistics detailing the outages 

they suffer, their durations, and the amount of downtime attributable to each failure mode.  All 

levels of the grid for which it makes sense to express load service statistics track load served and 

not served.  In the context of emergency autonomous operation, which is the focus of this work, 

the impact of MG topology (generators, lines, busses, and how these components are 

interconnected) on average load not served (LNS) is the quantity of interest, which is provided in 

kW-h per hour of bulk grid outage. 

 

4.2 Hoboken Microgrid Design Challenge 

There are 55 buildings (Figure 15) in Hoboken that are designated as critical and should remain 

operational during an emergency.  The buildings include emergency services, pump stations (for 

flood control), affordable and senior housing units, grocery stores, gas stations, and government 

buildings.  A complete listing of the buildings, their locations, and their estimated continuous 

loads is given in [26, 27]. 

 

The problem addressed here is to design a microgrid that minimizes average LNS, in kWh per 

hour of outage, of the 55 buildings without exceeding a limit on installation cost.  There are two 

types of design variables that define this problem.  First, the sizes and locations of natural gas 

generators are considered.  Natural gas generators are chosen as the generator type because the 

high-pressure natural gas pipeline that runs throughout Hoboken is assumed to remain 

operational during an emergency, as it did during Hurricane Sandy.  If installed, the generators 

are to be co-located with the 55 critical buildings.  Generator installation costs are based on their 

size.  The second type of design variable defines the topology of the microgrid.  K-means 

clustering was used to group the 55 generator sites into 13 sub-grids based on geographic 

location.  All buildings are assumed to be connected within each sub-grid, and each sub-grid can 

only be connected to adjacent sub-grids.  The cost to connect each sub-grid is based on the cost 

per foot of underground cable.  The building sub-grid assignments are tabulated in [26, 27]. 

 

In total, there are 153 design variables.  Each variable is binary in the sense that the choice for it 

is to either do nothing or install something (either a generator or MG connection).  There are 131 

generator installation design variables, and 22 MG connection design variables.  All 153 design 

variables and their installation costs are tabulated in [26].  Because of the emergency nature of 

this problem, fuel cost is not considered because fuel use is a short-term need that will be a 

relatively low cost in the long run.   

 

LNS is evaluated by running a PRM simulation on candidate microgrid designs that are proposed 

by the optimizer.  Time-dependent hourly load data for each building is estimated based on 

estimated peak loads.  Utility outage frequencies and durations are sampled from probability 

distributions such that they have an average duration of one week and occur on average every 

100 years.  The PRM is used to simulate grid-tied and autonomous operation continuously over a 

period of 100,000 years.  Therefore, the expected number of outages that are simulated with each 

run is 1,000.  The expected outage count was selected by increasing the total simulation time 

until stable results were observed between runs of identical configurations. 
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Figure 15: Critical Hoboken buildings shown on a flood map [27] 
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4.3 Single-Objective Results 

In this section, CGS is used to identify Hoboken MG configurations that reduce LNS and do not 

violate the cost constraint.  An upper limit on installation cost is set at $8M.  GA was also used 

to solve the optimization problem for comparison purposes. 

 

For CGS, Nbest and Nbatch are set to 50, and a fixed naïve Bayes classifier is used.  To promote 

broad search early in the solution process, the first 100 candidates are sampled randomly from 

uniform distributions.  After these initial 100 samples, the classifier is used to guide the search 

for the remainder of the optimization.  For the GA, the population size is 50, and the crossover 

and mutation rates are 0.8 and 0.1, respectively.  Similar to the single-objective experiments 

presented in 3.2, the GA used a two-point crossover operator, the random bit flipping mutation 

operator, and the “favor feasible” selector. 

 

Rate of convergence tests for both methods are executed five times each with a fixed upper limit 

of 10,000 objective function evaluations, and the average result of the 5 trials is computed 

(Figure 16).  Repeat evaluations of previously assessed solutions are not performed and are 

therefore not included in the rate of convergence results.   
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Figure 16: Single-objective rate of convergence results 

 

On average, CGS identifies a near-optimal solution with roughly 2,000 fewer objective function 

evaluations than the GA.  With the PRM configured as it is here, 2,000 evaluations equates to 

roughly 12 hours of simulation time.  While 12 hours may not seem significant, this time may 

add up to many additional days of analysis time when analysis runs are being performed as part 

of an iterative investigation.  Neither method immediately identifies solutions that satisfy the cost 

constraint in all five trials.  Therefore, the curves in the figure begin at the lowest number of 

evaluations needed for all five trials to identify feasible solutions.  Beyond the first 5,000 

function evaluations, the curves level off at almost identical levels of average LNS until the 

algorithms were terminated at 10,000 evaluations.  A discussion of the characteristics of the 

overall best solution found is provided in [26]. 
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4.4 Multi-Objective Results 

For the multi-objective version of the Hoboken MG design problem, the constraint on cost is 

treated as an additional objective to be minimized.  For CGS, preliminary trials found that the 

algorithm performed best for this problem when Nbest and Nbatch are set to 50, and PL is set to 3.  

Similarly, the GA performed well with an initial population size of 50, a crossover rate of 0.8, 

and a mutation rate of 0.1.  As with the multi-objective knapsack problem that was presented in 

Section 3.3, the fitness of an individual solution is determined by its domination count, the 

random bit mutation operator was used, and the two-point binary crossover operator was used.  

Lastly, the “below limit” selector was used in which designs that have a domination count below 

3 are chosen.  Both methods are terminated after 60,000 function evaluations. 

 

Results of the MOCGS and GA optimization runs are presented in Figure 17.  Each plot (a-f) in 

the figure represents a snapshot of the current state of the optimization after a specified number 

of function evaluations.  In all plots, the number of GA evaluations is greater than or equal to the 

number of MOCGS evaluations at the completion of that iteration. 

 

In contrast to the 2D knapsack problem, CGS did not outperform GA by all measures.  Early in 

the solution process (Figure 17a-b) the GA’s non-dominated set appears to dominate some of the 

designs in CGS’s non-dominated set; it also has broader spread and higher quantity of solutions.  

In the final four Pareto snapshots (Figure 17c-f), CGS and GA hold with similar-looking non-

dominated sets.  Upon close inspection of the final snapshot (Figure 17f), the GA set is slightly 

better.  First, there are several CGS solutions in the “knee” of the curve that are dominated by 

designs in the GA set.  Second, the spread of GA solutions in the objective space is greater 

overall.  Lastly, GA finds a larger quantity of non-dominated designs (210 vs. 147 for CGS).   

 

While the GA results are better in this one case, the difference is very slight.  Given the small 

number of trials presented here, and the randomness that is inherent to the PRM simulations and 

in both optimization techniques, there is insufficient evidence to make general conclusions about 

which technique is better, on average, for this particular problem.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 17: Multi-objective microgrid design problem Pareto progression 
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5 CONCLUSIONS AND FUTURE WORK 

The overall goal of this LDRD project was to advance the state of the art of the CGS 

optimization algorithm to a level at which it offers a competitive alternative to GAs for solving 

large, non-linear, discrete-variable, black-box, single- and multi-objective optimization 

problems.  The project was successful in that algorithmic improvements and the software 

implementation that resulted can significantly reduce the time required to solve such problems, 

especially if the objective function is computationally expensive to evaluate.  Three major tasks 

were completed to achieve the goals of this effort: 

 

 Scalability to large problems – Previously, CGS required that all discrete solutions in 

the design space be enumerated and processed individually by the classifier at each 

iteration of the algorithm.  This issue was addressed by directly sampling the distributions 

that comprise the classifier to generate new exploratory designs.  The idea was first 

published by Shahan et al. [2], and it was slightly modified and implemented as part of 

this LDRD. 

 Automatic learning of variable interactions – A significant benefit of CGS over some 

other optimization techniques is that it requires no assumptions be made about the 

functional form of the problem constraint(s) or objective function(s) to be optimized.  

However, the results of the deceptive function of order 3 (Section 3.2.1) demonstrated 

that capturing variable interactions with the classifier’s BN significantly improves 

optimization performance.  In general, it is difficult or impossible to construct the BN 

manually when little is known about the objective function.  Therefore, the K2 algorithm 

[15], an automatic BN learning algorithm, was implemented as part of this LDRD that 

learns these interactions on the fly and updates the classifier accordingly. 

 Extension to multi-objective optimization – Prior to this work, CGS had only been 

developed for optimization problems with one objective.  Many real world problems have 

multiple, competing objectives that must be traded off against each other.  Furthermore, 

many constrained single-objective problems may yield more insightful results if they are 

formulated as unconstrained multi-objective problems.  Therefore, this LDRD extended 

the ability of CGS to include multi-objective optimization by assigning class labels to the 

best solutions according the NSGA-II [16] sorting algorithm. 

 

The latest CGS algorithm, complete with the advancements listed above, was implemented into a 

portable C++ library that can be easily integrated with existing internal modeling and 

optimization software tools or as a stand-alone solver that interfaces with an objective function 

evaluator.  Furthermore, the implementation of the BN classifier that resulted from this work can 

be used for machine learning and classification tasks outside of the context of optimization. 

 

Several avenues for future work have been identified.  First, CGS should be integrated into 

existing Sandia optimization tools such as Technology Management Optimization (TMO), 

Whole System Trades Analysis Tool (WSTAT), and Microgrid Design Tool (MDT) as an 

optional alternative to GA.  Second, learning the BN on the fly has significant implication on the 

performance of CGS.  Additional work is needed to investigate how well the K2 algorithm is 

working and whether other network learning algorithms would perform better.  Third, unlike the 

JEGA solver, MOCGS only has one option for determining the “goodness” of a design in 

relation to a set of others in multi-objective space.  Implementing additional class-label 
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assignment strategies (e.g., based on domination count) may improve MOCGS’s ability to solve 

multi-objective optimization problems.  Fourth, it would be interesting to investigate how and 

whether CGS and GA could work together as a hybrid optimization technique, in which the 

classifier could serve as an additional operator for generating and screening new candidate 

solutions with each new GA population.  Lastly, a methodology for determining the types of 

problems for which CGS is best would be hugely valuable.  At present, without explicit 

knowledge of the underlying objective function(s), it is very difficult to know in advance which 

technique will perform best. 
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APPENDIX A:  TEST PROBLEM PARAMETERS 

Table A.1: 50-item knapsack problem parameters 
Item ID Value Weight 

1 3 94 

2 41 70 

3 22 90 

4 30 97 

5 45 54 

6 99 31 

7 75 82 

8 76 97 

9 79 1 

10 77 58 

11 41 96 

12 98 96 

13 31 87 

14 28 53 

15 58 62 

16 32 89 

17 99 68 

18 48 58 

19 20 81 

20 3 83 

21 81 67 

22 17 41 

23 3 50 

24 62 58 

25 39 61 

26 76 45 

27 94 64 

28 75 55 

29 44 12 

30 63 87 

31 35 32 

32 11 53 

33 21 25 

34 45 59 

35 43 23 

36 46 77 

37 26 22 

38 2 18 

39 53 64 

40 37 85 

41 32 14 

42 78 23 

43 74 76 

44 61 81 

45 61 49 

46 51 47 

47 11 88 

48 85 19 

49 90 74 

50 40 31 
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Table A.2: System design problem technology option costs and utilities 

Subsystem 

ID 

Number of 

Tech. Options Metric 

Technology Option ID 

1 2 3 4 5 6 7 8 

1 4 
Cost 52 54 2 86 - - - - 

Utility 19 65 10 30 - - - - 

2 6 
Cost 87 41 29 8 77 89 - - 

Utility 84 15 27 50 36 73 - - 

3 5 
Cost 66 60 1 49 56 - - - 

Utility 34 53 14 65 66 - - - 

4 5 
Cost 46 31 57 36 60 - - - 

Utility 17 5 17 99 31 - - - 

5 2 
Cost 71 50 - - - - - - 

Utility 50 26 - - - - - - 

6 2 
Cost 29 56 - - - - - - 

Utility 7 28 - - - - - - 

7 8 
Cost 49 1 48 78 76 64 52 83 

Utility 70 29 64 60 34 46 36 83 

8 6 
Cost 51 58 100 47 46 69 - - 

Utility 52 25 56 55 52 11 - - 

9 5 
Cost 42 41 39 40 9 - - - 

Utility 89 12 47 38 27 - - - 

10 7 
Cost 12 6 3 66 91 45 1 - 

Utility 4 39 70 77 93 33 72 - 

11 5 
Cost 33 68 13 96 45 - - - 

Utility 20 35 78 97 21 - - - 

12 5 
Cost 100 33 72 100 84 - - - 

Utility 11 30 33 16 21 - - - 

13 2 
Cost 22 51 - - - - - - 

Utility 11 58 - - - - - - 

14 4 
Cost 17 65 42 78 - - - - 

Utility 92 5 4 10 - - - - 

15 2 
Cost 81 27 - - - - - - 

Utility 97 27 - - - - - - 
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Table A.3: System design problem necessitations 

Driving Technology Option  Necessitated Technology Option 

Subsystem ID Tech. Opt. ID  Subsystem ID Tech. Opt. ID 

3 5  5 2 

7 1  10 2 

7 2  10 6 

7 3  10 2 

7 5  10 5 

7 7  10 2 

7 8  10 5 

8 2  11 3 

8 4  11 3 

8 5  11 3 

8 6  11 5 

8 1  13 1 

8 2  13 1 

8 3  13 1 

8 4  13 1 

8 5  13 1 

9 1  12 3 

9 2  12 3 

9 3  12 3 

9 4  12 3 

9 5  12 5 

9 1  13 1 

9 2  13 1 

9 3  13 1 

9 4  13 1 
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Table A.4: System design problem obviations 

Driving Technology Option  Obviated Technology Option 

Subsystem ID Tech. Opt. ID  Subsystem ID Tech. Opt. ID 

5 1  3 5 

7 4  10 2 

7 4  10 3 

7 4  10 4 

7 4  10 5 

7 4  10 6 

7 6  10 1 

7 6  10 2 

7 6  10 3 

7 6  10 4 

7 6  10 6 

8 1  11 2 

8 1  11 5 

8 3  11 2 

8 3  11 5 

 



 

47 

 

 
Table A.4: 30-city traveling salesman problem city coordinates [19] 

City ID x-coordinate y-coordinate 

1 54 67 

2 54 62 

3 37 84 

4 41 94 

5 2 99 

6 7 64 

7 25 62 

8 22 60 

9 18 54 

10 4 50 

11 13 40 

12 18 40 

13 24 42 

14 25 38 

15 44 35 

16 41 26 

17 45 21 

18 58 35 

19 62 32 

20 82 7 

21 91 38 

22 83 46 

23 71 44 

24 64 60 

25 68 58 

26 83 69 

27 87 76 

28 74 78 

29 71 71 

30 58 69 

 
Table A.5: Warehouse location problem warehouse capacities and warehouse-to-store 

supply costs [20] 

Warehouse Bonn Bordeaux London Paris Rome 

Capacity 1 4 2 1 3 

 Supply Costs 

Store 1 20 24 11 25 30 

Store 2 28 27 82 83 74 

Store 3 74 97 71 96 70 

Store 4 2 55 73 69 61 

Store 5 46 96 59 83 4 

Store 6 42 22 29 67 59 

Store 7 1 5 73 59 56 

Store 8 10 73 13 43 96 

Store 9 93 35 63 85 46 

Store 10 47 65 55 71 95 
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